Technische Universität Berlin Fakultät II – Mathematik und Naturwissenschaften Institut für Mathematik

Reinhold Schneider, Benjamin Kutschan

Numerische Mathematik I

13. Übungsblatt: Newton-Verfahren, Fixpunktiteration

Übungsaufgaben für die Tutorien (26.01.-19.01.2016):

Aufgabe 1:

Verwenden Sie das Newton-Verfahren zur näherungsweisen Bestimmung der Nullstellen \bar{x} der folgenden Funktionen

(a)
$$f(x) = x^3 - 2x^2 - 5x - 6$$
 mit $x_0 = 1$,

(b)
$$f(x) = xe^{-x} \text{ mit } x_0 > 2.$$

Aufgabe 2:

Zeigen Sie: Für $f(x) = \sin(x)$ existiert ein Startwert $x_0 \in (\frac{\pi}{4}, \frac{\pi}{2})$, so dass das Newton-Verfahren zyklisch ist mit Periode 2.

Aufgabe 3:

Es sei $f: \mathbb{R}^n \to \mathbb{R}^n$ stetig differenzierbar und $x^* \in \mathbb{R}^n$ eine Nullstelle von f, sodass das Differenzial $Df(x^*)$ invertierbar ist. Zeigen Sie, dass das vereinfachte Newton-Verfahren

$$x_{k+1} = x_k - (Df(x_0))^{-1} f(x_k)$$

für alle Startwerte x_0 aus einer Umgebung U von x^* linear gegen die eindeutige Nullstelle x^* konvergiert.